A hardware friendly unsupervised memristive neural network with weight sharing mechanism

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft Weight-Sharing for Neural Network Compression

The success of deep learning in numerous application domains created the desire to run and train them on mobile devices. This however, conflicts with their computationally, memory and energy intense nature, leading to a growing interest in compression. Recent work by Han et al. (2015a) propose a pipeline that involves retraining, pruning and quantization of neural network weights, obtaining sta...

متن کامل

Neuromorphic Computing with Reservoir Neural Networks on Memristive Hardware

Building an artificial brain is a goal as old as computer science. Neuromorphic computingtakes this in new directions by attempting to physically simulate the human brain. In 2008this goal received renewed interest due to the memristor, a resistor that has state, and again in2012 with the atomic switch, a related circuit component. This report details the constructionof a simula...

متن کامل

A geographically distributed bio-hybrid neural network with memristive plasticity

Throughout evolution the brain has mastered the art of processing real-world inputs through networks of interlinked spiking neurons. Synapses have emerged as key elements that, owing to their plasticity, are merging neuron-to-neuron signalling with memory storage and computation. Electronics has made important steps in emulating neurons through neuromorphic circuits and synapses with nanoscale ...

متن کامل

Towards Memristive Dynamic Adaptive Neural Network Arrays

We present the design and underlying device technology for a mixed-mode (analog and digital circuits) neuromorphic computing system built for rapid configuration, dynamic adaptation, low-power operation, that is well suited for processing spatio-temporal data. Neuromorphic or neuro-inspired computer architectures are particularly worthwhile given the increasing number of big data problems requi...

متن کامل

Unsupervised Neural Network Learning

In this article, we review unsupervised neural network learning procedures which can be applied to the task of preprocessing raw data to extract useful features for subsequent classication. The learning algorithms reviewed here are grouped into three sections: informationpreserving methods, density estimation methods, and feature extraction methods. Each of these major sections concludes with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2019

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2018.12.049